
  

STO-MP-IST-115 6 - 1 

 

 

Analysis of Real-Time Systems Scheduling Using MARTE 

GODARD Wenceslas 
EADS France  

D42 BP90112 31703 BLAGNAC 

FRANCE 

wenceslas.godard@eads.net 

VALENTIN Marie-Line 
Airbus  

316, route de Bayonne 31060 TOULOUSE 

FRANCE 

marie-line.valentin@airbus.com 

KORTMANN Peter 
Tri-Pacific Software Inc.  

909 Marina Village Parkway #283Alameda, CA 94501 

USA 

peter@tripac.com 

GERHARDT Mark 
Tri-Pacific Software Inc.  

909 Marina Village Parkway #283Alameda, CA 94501 

USA 

mark@tripac.com 

ABSTRACT 

The “Schedulability Analysis Modelling” (SAM) package of UML 2.0 profile MARTE for Modelling and 

Analysis of Real-Time Embedded systems is providing support for schedulability analysis with RMA-type 

techniques. The goal is to help software architecture designers to guarantee that processes always meet their 

deadlines. We have tried to take the simplest approach as possible to characterize the timing and resource 

properties necessary to specify a complete set of inputs for a rate monotonic schedulability analysis. Our 

goal was to take a "usable" approach for the application of the MARTE profile. Our work is based on the 

OMG standard MARTE, and proposes a subset which can express all the useful and required information 

for the verification stage. This study is targeting the aeronautical domain where some avionics systems have 

strong real-time requirements and would benefit from early scheduling analysis. The goal of this paper is 

therefore to propose a methodology for designing critical systems scheduling and verifying them with 

RapidRMA™ tool, and to experiment it on a representative avionics application. 

1. ANALYSIS OVERVIEW 

This paper presents a methodology for real-time software designers to capture and analysis the timing 

requirements of their architecture. The goal is to ensure the application will execute under worst case 

conditions using the available resources and within the time allocated to perform the required tasks. The 

schedulability analysis tool used is RapidRMA  from Tri-Pacific Software Inc., it provides the capacity to 

analyze single node, multiple nodes or dependent end-to-end architectures using Rate Monotonic Analysis 

(RMA), and also provides analysis for cyclic and aperiodic tasks. Note that this software is available as an 

IBM Rhapsody plugin and some figures of this paper are actually snapshots from this tool. RapidRMA 



Analysis of Real-Time Systems Scheduling Using MARTE      

6 - 2 STO-MP-IST-115 

 

 

requires information about the different tasks: this is mainly the period, working time, deadline, priority and 

the resources used. In practice, these attributes may change over the development process. For example, 

working time need to be initially estimated and later refined. As a consequence, in order to guarantee a 

consistency of analysis results from design to implementation stage, our approach aims at being integrated 

within existing modelling framework. Emerging UML2.0 profile MARTE [1] is by construction tailored for 

Modelling and Analysis of Real-Time and Embedded systems, it also gives support for schedulability 

analysis through the SAM package. Our goal is therefore to build on top of this, using an existing modelling 

framework implementing MARTE. 

2. TECHNICAL APPROACH 

The Annotation Process and Rationale 

Timing properties will be implemented by applying MARTE stereotypes to class instances and message 

instances on Sequence Diagrams. In the case of shared mutexed resources, stereotypes will be applied to the 

operations of the class. We have chosen a minimal set of stereotypes that can be used rather than the large 

number used in the examples available in the OMG UML MARTE specification. Our objective is to create a 

more usable subset of MARTE concepts dedicated to the annotation of hard deadline performance 

parameters. This will enhance the adoption of this profile by the UML real-time user community.  

This simplified approach was chosen because the details related to the allocation of logical processes to 

physical entities (with the exception of CPU) are intrusive and not helpful for chedulability modelling. The 

execution time for a schedulable thread is entered into a RMA model as an aggregated duration. This 

execution duration characterizes a specific CPU, cache, memory residency, and paging algorithm strategy. 

The time entered into the analysis model is obtained either by profiling or extrapolation of a known 

execution time for the specific CPU deployment context. Detailed allocation of memory and description of 

other CPU related resources only add complexity and are useless for this type of characterization.  

The definition of scheduling dependencies between schedulable entities is not explicit within MARTE. 

Additional attributes have to be added to UML design to facilitate annotation for predictable DPCP 

(Distributed Priority Ceiling Protocol) and multi-processor deadline and for system timing requirements. The 

properties contained within each class instance and its relevant events and messages can be used 

appropriately for processor schedulability analysis, DPCP and aggregate priority ordering in the analysis 

tools. 

Current definition of “resource” in RapidRMA is a synchronously accessed mutex with associated timing 

properties (acquisition time, deacquisition time, operation time). We have adopted the synchronous operation 

approach rather than the lock-unlock semantics used in the OMG UML MARTE style. We have done this so 

that the arbitration policy per resource (PCP, Highest Lockers, Basic Inheritance, and No Preemption) is 

enforceable within a protected operation using synchronous calling conventions.  

Approach to handle Communication Needs and Scheduling 

The MARTE profile is the result of a thorough job with regard to resource characterization of many types of 

resources. Network and Communications needs and communications execution resources (busses, message 

clients, etc.) are characterized in a similar manner to computation needs and computation resources (CPUs, 

executable task instances, etc.). The symmetric definition of resource types can be observed in Figure 1, 

from the MARTE profile: 



Analysis of Real-Time Systems Scheduling Using MARTE  

STO-MP-IST-115 6 - 3 

 

 

 

Figure 1 Symmetric Resource Definition for Communication and Computation 

 As a consequence of the symmetric handling of communication resources and computation resources, a 

sequence diagram may contain execution instances that use CPU resources or communications resources in a 

straightforward manner. Consider the following example from the MARTE draft in Figure 2: 

 

Figure 2 Computations and Messaging in a Sequence Diagram 

Note that the Reporter and Controller_Comm columns in the sequence diagram represent executable task 

instances, while the CAN_Bus column represents a messaging use of the CAN_Bus. The Station_Comm 

column represents the software that needs to be aware that the CAN_Bus was successfully used. The 

CAN_Bus column uses network resources while the other columns use CPU resources. Both these uses are 

directly connected with messaging arrows between their respective portions of the sequence diagram. 

Communication has now been factored in on an "equal basis" to computation needs for timing analysis 

purposes. No further exploitation of attribution is necessary other than to use communications resources and 

their instances within use case or sequence diagrams/scenarios and intersperse them with the CPU-based 



Analysis of Real-Time Systems Scheduling Using MARTE      

6 - 4 STO-MP-IST-115 

 

 

execution instances. Dependencies and causalities are all taken care of by the messaging control protocol 

expressed in the sequence diagram between source and destinations of the message arrows. Therefore, the 

network-related stereotypes provided in MARTE combined with judicious use of communication resource 

execution instances in the sequence diagram provides a complete notation and parametric characterization. 

Our design approach through a series of examples 

We will present our design approach by describing through examples our recommended usage of MARTE 

features. This will be followed by a discussion and generalization of what has been presented in the 

examples.  

The first example deals with a representative "straightforward" multi-threaded scheduling problem. It has 

concurrent threads, resource use, and non-preemptible sections. This one example covers the bulk of the 

annotation needed for the majority of schedulability analysis problems. This example features a single CPU. 

The second example shows a multi--CPU architecture and adds the notion of task dependency. The third 

example shows multi-CPU architecture and the synchronization of a set of terminating tasks.  

First example -- Single CPU: threads, resources, non-preemptible regions 

A sequence diagram characterizing the system to be analyzed is shown below in Figure 3. 

 

Figure 3 Single CPU Multithreaded Example  

There are two periodic threads to be executed: server and periodic. We have shown two different possible 

UML styles that can invoke a periodic thread. In our analysis for processing of UML sequence diagrams, 

open-headed arrows arriving at a class instance on a sequence diagram denote the activation and the 

invocation of a new executing instance of the class – i.e. a new schedulable element. The instance of server 

is invoked by an event that generates a message from the UML environment (the column with the striped 

vertical line) to the class instance named server. This is an open-headed arrow, which is realized as an event 

within UML. This will generate an executing instance of server for each message arrival. Note that we have 

applied the MARTE stereotype for <<TimerResource>> to message_0 in the UML diagram. We have also 



Analysis of Real-Time Systems Scheduling Using MARTE  

STO-MP-IST-115 6 - 5 

 

 

applied the MARTE stereotype for <<SaStep>> to the message as well. The result of the application of these 

two stereotypes yields the tags for message_0 in the sequence diagram as shown in Figure 4 and Figure 5 

below. Figure 4 shows the tags that result from the application of the <<TimerResource>> stereotype and 

Figure 5 shows the tags that result from the application of the <<SaStep>> stereotype. 

 

Figure 4 Tags for message_0 from <<SaStap>> stereotype 

 

Figure 5 Tags for message_0 from <<TimerResource>> stereotype 

The application of these two stereotypes has allowed us to characterize a periodic occurrence pattern, a 

deadline, and the amount of execution work to be performed for each executing instance. These are the basic 

properties necessary to characterize an executing task for RMA.  

  



Analysis of Real-Time Systems Scheduling Using MARTE      

6 - 6 STO-MP-IST-115 

 

 

An execution instance of server is created by a message arriving at server according to the occurrence 

pattern as caused by an event in the UML world, which also has the name message_0. Message_0 is caused 

by the occurrence of an event named message_0, which occurs in the UML runtime environment. This is the 

reason that message_0 on the sequence chart is realized as an event named message_0. See Figure 6 below: 

 

Figure 6 Message Realization as an event 

The self directed message labelled nonpreempt in the sequence diagram also has the <<SaStep>> stereotype 

applied to it and has the same properties that have already been discussed for message_0 as tags. In addition, 

one other property contained as a tag within <<SaStep>> is used to indicate non-preemption. This property is 

shown in the screenshot below, which shows additional tags contained within <<SaStep>>. 

 

Figure 7 Non-preemption property from <<SaStep>>  



Analysis of Real-Time Systems Scheduling Using MARTE  

STO-MP-IST-115 6 - 7 

 

 

The MARTE profile is a highly complex and highly interactive collection of packages, types, tags, and 

relationships. Addressing the problem of modelling logical threads down to a physical CPU requires the use 

of a surprisingly large part of the MARTE profile. Rather than going through the complex description of the 

multilevel allocation structures between a processor and a CPU and a computing step, which are unnecessary 

for performing RMA, we have used the Host attribute of the <<SaStep>> stereotype. 

 

Figure 8 CPU Specified in Host attribute 

The CPU Object, which appears in the Sequence Diagram of Figure 3 represents the deployable CPU and 

has the stereotype <<GaExecHost>> applied to it. This allows assignment of the CPU object to the value 

Host in the <<SaStep>> of the invoking message. This is shown above in Figure 8. This provides the 

remainder of the CPU-related parameters. The complete process by which a <<SaStep>> would be allocated 

to a computing resource, which would then be bound to a CPU, is extremely tedious and we have simplified 

the process to eliminate the intermediate layers to make these capabilities usable in a straightforward 

manner. We feel that the complete process by which computing steps are bound to logical processors, which 

are bound to physical CPUs, would not be acceptable to performance analysts because of its complexity. We 

recommend the simplified approach above to promote the use of this approach when performing a 

schedulability analysis on well-defined collections of CPUs. If the process is overly complex, neither 

MARTE nor schedulability analysis will be widely used. 

This simplification makes sense because the duration and the execution time in the <<SaStep>> stereotype 

of the UML model are already calibrated for a specific CPU. The nonlinear effects of changing the memory 

size, cache refresh policy, bus speed, or any other property that would affect the execution time would have 

an extremely indirect effect on that execution time. The only meaningful way that people use RMA and 

scheduling tools is to understand the CPU and its execution nature for an application either by profiling 

observation or by having highly analogous apriori reasoning and experience data. For scheduling purposes 

and RMA, it makes no sense to go through the tedious allocation process and CPU subcomponents 



Analysis of Real-Time Systems Scheduling Using MARTE      

6 - 8 STO-MP-IST-115 

 

 

specification and characterization as shown in the MARTE examples in the OMG specification. The data for 

meaningful execution timing entered into tools like RapidRMA will be obtained by profiling. Since this is 

the case, the CPU can be abstracted away from the timing. The timing is in the profiling and observation of 

executing a standalone component on the specific processor in question. The only additional properties we 

need to use to characterize the CPU within the RAM model are SpeedFactor, SchedPolicy, SchedPriRange, 

and CnTxtSwT. 

The instance of periodic on the sequence diagram is invoked in a slightly different manner. Message_1 is a 

self directed message on the timeline for the periodic task. It does not come from the environment. It is still 

implemented in the same manner as message_0 was in the example. It is realized as an event within UML 

and we have applied the same stereotypes from MARTE, namely, <<TimerResource>> and <<SaStep>>. 

We obtain the same annotation capabilities for occurrence pattern, deadline, and execution duration as 

required. This causes repetitive execution instances of periodic in the desired manner. The buffer object in 

the diagram represents a mutually exclusive resource. The stereotype for <<SaSharedResource>> has been 

applied to the buffer class. This provides the additional parameters necessary for resource characterization 

like acquisition and deacquisition time. The list of tags is shown below in Figure 9: 

 

Figure 9 Tags for Mutexed Shared Resources 

The shared resource does not have its own thread of execution so there are no invocation timing 

characterizations required about initiating it. Note that the operations within the buffer object named get and 

put are drawn this time with closed arrows rather than open arrowheads. The significance of the closed arrow 

shows that this operation executes in the control thread of the caller and operates as a passive procedure call. 

Note that the stereotype <<SaStep>> has been applied to the get and put operations in the buffer class rather 

than on any connectors in the sequence diagram. This characterizes each usage of the resource in a consistent 

manner. See Figure 10: 



Analysis of Real-Time Systems Scheduling Using MARTE  

STO-MP-IST-115 6 - 9 

 

 

 

Figure 10  <<SaStep>> applied to mutexed class operations 

The time spent in the resource operation is added as execution work to the caller's thread for timing and 

schedulability purposes. This is exactly the desired effect. The total work is now the duration of work done 

as specified in the <<SaStep>> of the caller when added to the duration specified in the <<SaStep>> of the 

operation within the buffer resource  being called by the caller. For brevity, the <<SaStep>> tags display has 

not been repeated here in the document. It would be identical to the one shown previously for message_0. 

Second example -- Task dependency on multiple CPUs 

This example illustrates computation dependency. Starting one task depends upon completion of another. 

Task2 cannot begin execution until Task1 is complete. This example executes on two CPUs. The sequence 

chart is shown as Figure 11 below. 

Figure 11 Multiple CPUs Example 

Three tasks and two CPUs are shown in the diagram. Two tasks (Task0 and Task1) are invoked periodically 

as in the previous example. This is done by self-directed messages for each task (message_0 and message_1) 

by applying the <<SaStep>> and <<Timer Resource>> stereotypes. Application of the stereotypes gives a 

place for the occurrence pattern, the deadline, and the duration of work that occurs for each invocation to be 



Analysis of Real-Time Systems Scheduling Using MARTE      

6 - 10 STO-MP-IST-115 

 

 

specified as tags for the message. In addition, a local tag designating CPU as described previously in the 

document has been added to each message. Message_0 has a CPU property equal to CPU1. Message_1 has a 

CPU property equal to CPU2. This associates the execution of each instance with residency on the correct 

CPU. 

The CPUs are drawn on the sequence diagram to represent the deployment platform. They are not explicitly 

called on the diagram. They are accessed by a reference from the value of the CPU property of each message 

within the local CPU tag. 

Message_2 originates after the completion of the Task1 instance invoked by message_1. This correctly 

indicates that the beginning for an execution instance of Task2 depends on the completion of an execution 

instance of Task1. The timing properties for message_2 are obtained from the timing properties of the calling 

thread and Task2 occurs with the same periodicity as the caller. The amount of work for each instance of 

Task2 is entered as the duration in the <<SaStep>> property since that stereotype has been applied to 

message_2. 

Implementation of tools and a user interface to support this type of invocation dependency needs to ensure 

semantic consistency between calling invocations and other subsequent downstream dependent task 

invocations. In the sequence diagram, the stereotypes for <<SaStep>> and <<TimerResource>> have been 

applied to message_2. The parameters relevant to the deadline and occurrence pattern for message_2 causing 

invocation of a Task2 instance are obtained from the execution properties of Task1. This ensures that the task 

dependency chain will have consistent periodicity. This is semantically required in a dependency 

relationship. Message_2 is the only message in the example which creates a task dependency. This is 

because it does not originate directly from an event or from the environment. It originates as a consequence 

of the completion of Task1 since it is the next thing sequentially in the execution chain of Task1 execution as 

defined in the sequence diagram. 

Analysis of this sequence diagram will ensure that the proper dependency and ready time computations are 

obtained from the invocation path specified within the sequence diagram. This is all that needs to be done to 

characterize multiple CPUs, and task invocation dependency across or within CPUs as desired. 

Third Example -- Multi CPU Termination Dependency 

It is often necessary to show dependency between tasks defining their organized termination. Previous 

dependency examples and current support within schedulability tools shows dependency for invocation 

termination. This example shows how to use mutually exclusive resources to obtain controllable semantics 

for synchronized termination of multiple tasks. 

The behavior that we desire to achieve is most easily described in an activity diagram. This is because one of 

the primitive control forms in an activity diagram is a synchronization bar to gather together parallel threads 

into a downstream sequential thread. The activity diagram to convey the synchronization that we desire 

appears below as Figure 12: 



Analysis of Real-Time Systems Scheduling Using MARTE  

STO-MP-IST-115 6 - 11 

 

 

Figure 12  Activity Diagram describing synchronized tasks termination 

In a sequence diagram, three tasks (Task0, Task1 and Task2) are all started in a normal manner as before 

using occurrence pattern, deadline and duration parameters to characterize each executable instance. Once 

again we will use <<SaStep>> and <<TimerResource>> to generate places to hold those values within the 

originating message.  

RMA does mathematical determination of worst-case response time. It does not perform calculations to 

decide "what goes before what" but only guarantees that the sequence of things that must be non-overlapping 

can complete within the obtained analytical worst-case response time. This provides us with a means to 

generate the dependency semantics needed within the activity diagram. All three originating tasks must be 

completed before the consequential windup task has begun. For this example we will use one CPU for 

simplicity. This example may be extended to multiple CPUs in a straightforward manner. Since there is one 

CPU, the effect of the dependency relationship shown in the activity diagram on one CPU means that all four 

tasks must be able to execute in a sequential order. This is because the windup task cannot begin until Task0, 

Task1 and Task2 have completed. In addition, these three tasks all compete for the CPU and must all vie for 

the CPU resource between themselves. We will define a mutually exclusive resource called SyncResource. 

This resource will be exclusively held by each task during the entirety of its execution. By defining and 

utilizing resources such as this throughout the execution of the task, we can define run-to-completion 

semantics because any other task which might preempt will also need the resource. As a consequence those 

potentially preemptive tasks are unable to run until the resource is released by the completion of execution 

for the task currently holding and locking that resource. The sequence diagram for this example is shown in 

Figure 13 below. 



Analysis of Real-Time Systems Scheduling Using MARTE      

6 - 12 STO-MP-IST-115 

 

 

 

Figure 13 Sequence Diagram describing synchronized task termination 

The sequence diagram shows four tasks that are independently invoked by self-directed messages. The usual 

stereotypes (<<SaStep>> and <<TimerResource>>) have been applied to the messages to specify occurrence 

interval, deadline, and duration. The <<SaSharedResource>> stereotype has been applied to the 

SyncResource. Since the windup task is dependent upon the termination of the other three ancestor tasks, its 

repetition period cannot be any smaller than the largest period of any of the ancestor tasks.  

The SyncResource is a mutually exclusive resource.  One caller at a time locks that resource and in turn the 

arbitration policy set within the scheduling context (for example priority ceiling, highest lockers, or priority 

inheritance) will determine the priority by which the calling thread executes while holding the lock resource.  

This behaviour is indicated by the use of a closed arrow rather than open arrow. This designates a passive 

procedure call rather than multiple execution schedulable threads. 

Four operations have been defined on this resource to denote their use by each client for an appropriate 

amount of time. Each operation has had the stereotype <<SaStep>> applied to the operation. As a 

consequence, there is a tag for ExecTime available with each operation. This serves as the place to enter the 

duration of time associated with each call to the operation. That is the time for which the resource will be 

exclusively held by the caller. 

3. CASE STUDY 

In order to experiment the previously described approach, we have defined a case study coming from a 

Software Dynamic Design description of a Flight Warning system. We have extracted the main features of 

the existing dynamic architecture in order to build a simplified but representative subset and to prove the 

suitability of our approach to model it and run timing analysis. Simplifying the model is easier to reduce the 

high number of shared resources that are used to communicate between these processes like buffers, 

blackboards, and events. We have also restrained the modelling to a mode called NORMAL that is reached 

after initialization upon reception of a message from the environment. 

This application is based on ARINC-653 standard. It is part of a single partition hosted by a single CPU and 

is composed of two concurrent processes. First one is periodic and high- priority (called PP in what follows), 



Analysis of Real-Time Systems Scheduling Using MARTE  

STO-MP-IST-115 6 - 13 

 

 

whereas the other is cyclic and low-priority (called AL in what follows). One main action of the task is to 

send graphical pages to be displayed at the end of each frame. During each period, process PP reads I/O, 

performs some work and writes some data to a buffer, this data is then read by AL before performing some 

computational work. Such system would be schedulable if the cyclic task does finish its task after a given 

and fixed number of periods. In what follows, we restrain the verification for the case of only one period, 

which is sufficient to prove the schedulability for any number of periods due to the fact process AL is cyclic. 

However, we will discuss the general case in next section.    

First step is to create a sequence diagram to represent corresponding behaviour. For this purpose, we choose 

to represent the creation of the processes with normal_synchro and normal_synchro_bis messages, a 

periodic (same period as PP) and a deadline also equal to PP period. The sequence modelling follows the 

described methodology from the previous sections, as shown in following figure 14: 

 

Figure 14 Sequence diagram for a subset of the case study 

Next step is to edit the timing properties that are given in the Flight Warning documentation. This concerns 

mainly periodicity, deadlines and worst case execution time. In the current version of the tool, this is done by 

setting parameters in the RapidRMA™ “Edit Timing Properties” view, the normal_synchro and 

normal_synchro_bis periods are set thanks to parameter SAOccurencePattern and their deadline with 

SAAbsDeadline. All the WCET for the non_preempt and AL_computing steps are assigned with RTduration. 

Note that in this particular single-CPU case, one default processor is automatically generated by the tool. At 

this point, we are able to run the timing analysis, by passing the required parameters regarding  access 

control protocol and scheduling policy, which is either Rate Monotonic or Deadline Monotonic. With this 

required information, results show a schedulable system. By increasing the work load to a certain point, the 

analysis reports an error stating the utilization for the default processor by giving the percentage.  



Analysis of Real-Time Systems Scheduling Using MARTE      

6 - 14 STO-MP-IST-115 

 

 

4. FUTURE WORK AND CONCLUSIONS  

This paper presents a methodology based on the combined use of MARTE profile and RapidRMA™ tool, 

through its IBM Rhapsody™ plug-in version, in order to characterize the timing and resources properties 

necessary to specify a complete set of inputs for a rate monotonic schedulability analysis. Our approach 

consists in applying a reduced set of MARTE stereotypes. The complex features from MARTE dealing with 

logical CPU, physical CPU, computing platform, scheduler, allocation, etc. while being totally general and 

extensible in nature, add difficulty and burden to understanding and use. The choice of the Host tag (which 

does not require the use of the allocation process) to assign thread instances to specific processors provides 

an extremely straightforward and easy to grasp capability for a multi-CPU schedulability analysis. Execution 

timing data is obtained by profiling or historical analysis. The only additional timing characteristics 

necessary for a CPU to support analysis purposes are normalized clock speed (so that margins can be 

checked by hypothesizing increases or decreases in CPU speed), and context switch information. A summary 

table of the stereotypes and their application is shown below in Figure 14: 

UML Element Stereotypes to be applied Purpose/Reason used 

Message <<SaStep>>,  

<<TimerResource>> 

Occurrence Period , deadline, 

Execution Time 

Resource Operations <<SaStep>> Execution Time 

Shared Resource <<SaSharedResource>> Resource locks and related 

properties for analysis 

CPU <<GAExecHost>> Schedule properties, context switch 

Figure 14 Stereotypes used and their justification 

The feasibility of the described methodology has been demonstrated on a representative case coming from an 

avionic system. This activity has been driven based on AIRBUS interest for modelling systems in order to be 

able to perform formal verification at early stages of the design process. This paper shows successful results 

of the approach when applied to some industrial use case subset. Of course, further work is required before 

getting to the integration of proposed approach in future software architecture design process. First, there is a 

need to pursue the in-depth analysis of the MARTE modelling profile. As a matter of fact, this is required to 

assess how well this approach could fit the industrial design methodology. Another currently ongoing step is 

to investigate more case studies in order to get a better knowledge of RapidRMA™ capabilities based on 

different systems from the avionics world. For example, as mentioned earlier, the case study of this paper 

should actually show a cyclic task spreading over a few periods of PP process. In order to deal with this 

problem, one can assign a sporadic server to the cyclic task. This can already currently be done with 

standalone RapidRMA™ tool, but remains out of the scope of the described UML based approach of this 

paper. Possible solutions, from simple but not standard UML to fully MARTE compliant and integrated, 

have to be assessed.    

5. REFERENCES 

[1] UML Profile for MARTE: Modelling and Analysis of Real-Time Embedded Systems, OMG 

 


